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Agglomeratedmultigrid techniques used in unstructured-grid methods are studied critically for a model problem

representative of laminar diffusion in the incompressible limit. The studied target-grid discretizations and

discretizations used on agglomerated grids are typical of current node-centered formulations. Agglomerated

multigrid convergence rates are presented using a range of two- and three-dimensional randomly perturbed

unstructured grids for simple geometries with isotropic and stretched grids. Two agglomeration techniques are used

within an overall topology-preserving agglomeration framework. The results show that a multigrid with an

inconsistent coarse-grid scheme using only the edge derivatives (also referred to in the literature as a thin-layer

formulation) provides considerable speedup over single-grid methods, but its convergence can deteriorate on highly

skewed grids. A multigrid with a Galerkin coarse-grid discretization using piecewise-constant prolongation and a

heuristic correction factor is slower and also can be grid dependent. In contrast, nearly grid-independent

convergence rates are demonstrated for amultigridwith consistent coarse-grid discretizations. Convergence rates of

multigrid cycles are verified with quantitative analysis methods in which parts of the two-grid cycle are replaced by

their idealized counterparts.

I. Introduction

M ULTIGRID techniques [1] are used to accelerate convergence
of current Reynolds averaged Navier–Stokes solvers for

steady and unsteady flow solutions, especially for structured-grid
applications. Mavriplis [2–4] and Mavriplis and Pirzadeh [5]
pioneered agglomerated multigrid methods for large-scale
unstructured-grid applications. Impressive improvements in
efficiency over single-grid computations have been demonstrated.
During a recent development of multigrid methods for unstructured
grids [6], it was realized that some of the current approaches for
coarse-grid discretization of viscous fluxes used in state-of-the-art
codes have serious limitations on highly refined grids. The purpose
of this paper is to critically study the current techniques for a simple
Poisson equation (representing laminar diffusion in the incompres-
sible limit), assess their performance in grid refinement, and develop
improved approaches.

The paper is organized as follows. The model diffusion equation
and control-volume partitions are presented from a general finite
volume discretization (FVD) standpoint in Sec. II. Elements of
multigrid algorithms are described, including a tabulation of target
and coarse-grid discretizations in Sec. III. Quantitative analysis
methods, in which parts of the actual multigrid cycle are replaced by
their idealized counterparts, are described in Sec. IV. The target grids
and typical agglomerated grids developed within a topology-
preserving framework are shown in Sec. V, followed by two- and
three-dimensional results in Secs. VI and VII, respectively. Results
from applying analysis methods to 3-D computations are also
reported in Sec. VII. Section VIII contains conclusions.

II. Model Diffusion Equation
and Boundary Conditions

The FVD schemes considered are derived from the integral form
of the diffusion equation,

I
�

�rU � n̂� d��
ZZ

�

f d� (1)

where f is a forcing function independent of the solution U, � is a
control volumewith boundary�, n̂ is the outward unit normal vector,
and rU is the solution gradient vector. The boundary conditions are
taken as Dirichlet, that is, specified from a known exact solution
over the computational boundary. Tests are performed for simple
manufactured solutions, namely, collections of polynomial or sine
functions. The corresponding forcing functions are found by sub-
stituting these solutions into the differential form of the diffusion
equation,

�U� f (2)

and boundary conditions. The discretization error, Ed �U � Uh, is
defined as the difference between the exact continuous solution,U, to
the differential Eq. (2) and the exact discrete solution, Uh, of the
discretized Eq. (1). The algebraic error is the difference between the
approximate and exact discrete solutions. A scheme is considered as
design-order accurate if its discretization errors computed on a
sequence of consistently refined grids [7,8] convergewith the design
order in the norm of interest.

The general FVD approach requires partitioning the domain into a
set of nonoverlapping control volumes and numerically implement-
ing Eq. (1) over each control volume. Node-centered schemes define
solution values at the mesh nodes. In two dimensions, the primal
meshes are composed of triangular and quadrilateral cells; in three
dimensions, the primal cells are tetrahedral, prismatic, pyramidal, or
hexahedral. The median-dual partition [9,10] used to generate
control volumes is illustrated in Fig. 1 for two dimensions. These
nonoverlapping control volumes cover the entire computational
domain and compose a mesh that is dual to the primal mesh.

The control volumes of each agglomerated grid are found by
summing control volumes of a finer grid. Any agglomerated grid can
be defined in terms of a conservative agglomeration operator, R0, as
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�c � R0�
f (3)

where the superscripts c and f denote entities on coarser and finer
grids, respectively. On the agglomerated grids, the control volumes
become geometrically more complex than their primal counterparts
and the details of the control-volume boundaries are not retained. The
directed area of a coarse-grid face separating two agglomerated
control volumes, if required, is found by lumping the directed areas
of the corresponding finer-grid faces and is assigned to the virtual
edge connecting the centers of the agglomerated control volumes.

III. Multigrid

Elements of the multigrid algorithm are presented in this section.
A V cycle [1], denoted as V��1; �2�, uses �1 relaxations performed at
each grid before proceeding to the coarser grid and �2 relaxations
after coarse-grid correction; the coarsest grid is solved exactly (with
many relaxations). Residuals, r, corresponding to the integral
equation (1) are restricted to the coarse grid using R0, as

rc � R0r
f (4)

The prolongations P0 andP1 are exact for piecewise-constant and
linear functions, respectively. The prolongationP0 is the transpose of
R0. The operator P1 is constructed locally using linear interpolation
from a triangle (two dimensions) or tetrahedra (three dimensions)
defined on the coarse grid. The geometrical shape is anchored at the
coarser-grid location of the agglomerate that contains the given finer
control volume. Other nearby points are found using the adjacency
graph. An enclosing simplex is sought that avoids prolongation with
nonconvex weights and, in situations in which multiple geometrical
shapes are found, the first one encountered is used. Where no
enclosing simplex is found, the simplex with minimal nonconvex
weights is used. The coarse-grid solution approximation is restricted
as

Uc � R0�Uf�f�
�c

(5)

The correction �U to the finer grid is prolonged typically through P1

as

��U�f � P1��U�c (6)

The available consistent target-grid discretizations are the Green–
Gauss and the average least squares (Avg-LSQ). These schemes are
representative of viscous discretizations used in Reynolds averaged
Navier–Stokes unstructured-grid codes. The main target discretiza-
tion of interest is the Green–Gauss scheme [6], which is the most
widely used viscous discretization for node-centered schemes and is
equivalent to a Galerkin finite element discretization for triangular/
tetrahedral grids. For mixed elements, edge derivatives are used to
increase the h ellipticity [1] of the operator and thus avoid
checkerboard instabilities [6,10]. Typically, the flux at a face is
formed by the edge derivative computed as the divided difference of
the solutions at the edge nodes and the Green–Gauss gradient

projected onto the directions normal to the edge. The Avg-LSQ
scheme defines the flux by the edge derivative and the average of the
dual-volume least-squares (LSQ) gradients projected onto the
directions normal to the edge [10,11]. The stencils for the dual-
volume LSQ gradients include all edge-connected neighbors. The
LSQminimization enforces the given solution at the central node. In
both formulations, Dirichlet boundary conditions are implemented
strongly.

The exact linear operator is used in the iterative phase of the
Green–Gauss scheme, enabling a robust multicolor Gauss–Seidel
relaxation. The Avg-LSQ scheme has a comparatively larger stencil,
and its exact linearization is not used in iterations; instead, relaxation
of the Avg-LSQ scheme relies on an approximate edge-terms-only
linearization, which approximates face gradients as edge derivatives.
So far, we observe good smoothing rates with this approach, but
previous analysis has shown that the smoothing rate can deteriorate
on highly skewed grids [6]. The estimates for the smoothing rates
obtained with quantitative analysis methods [12] are shown in
Sec. VI. The Green–Gauss scheme relies on an element-based data
structure and is not considered for agglomerated grids. Note that the
Green–Gauss scheme can be written as an edge-based formulation
for simplicial grids.

The available coarse-grid discretizations are two possible direct
discretizations (Avg-LSQ and edge terms only) and two possible
Galerkin discretizations (R0A

fP�0 and R0A
fP1) in which the coarse-

grid operators are derived from the fine-grid operator. Dirichlet
boundary conditions are enforced strongly. The coarse-grid operator
is overwritten with the boundary condition linearization at boundary
nodes.

The edge-terms-only discretization is often cited as a thin-layer
discretization in the literature [2,3,5]; it is a positive scheme but on
nonorthogonal grids it is not consistent (i.e., its discrete solution does
not converge to the exact continuous solution with consistent grid
refinement) [7,8,13]. An orthogonal grid would have each edge node
across a face be colinear with the corresponding directed area vector.
Another possible coarse-grid discretization strategy, not considered
here, is to construct simplicial grids from the coarse-grid vertices.

TheGalerkin coarse-grid operator [1] is denoted byRAP. Because
the governing equation is a second-order equation, the Galerkin
construction, R0A

fP0, is formally inconsistent [2,3]; the heuristic
correction factor adopted by Mavriplis [2] is used:

Ac � R0A
fP�0 �

1

2
R0A

fP0 (7)

The correction factor, applied per agglomerated cell, is derived by
enforcing consistency on uniformly agglomerated hexahedral
meshes. The Galerkin construction, R0A

fP1, is consistent, but was
found to be unstable in a multigrid.

IV. Quantitative Analysis of Unstructured
Multigrid Solvers

The quantitative analysis methods for unstructured multigrid
solvers considered in this section are idealized relaxation (IR) and
idealized coarse-grid (ICG) iterations, introduced in [12]. The
methods analyze the main complementary parts of a multigrid cycle:
relaxation and coarse-grid correction. In a multigrid, relaxation and
coarse-grid correction are assigned certain tasks: relaxation is
required to smooth the algebraic error, and coarse-grid correction is
required to reduce smooth algebraic errors.

To apply the analysis, we first choose a desired sample fine-grid
solution (zero is a natural choice for linear problems) and substitute it
into the equations to generate the corresponding source and
boundary data. Thenwe form an initial guess (for example, a random
perturbation of the solution); thus, the fine-grid algebraic error is
known. In the analysis, idealized iterations probe the actual two-grid
cycle to identify parts limiting the overall efficiency. In these
iterations, one part of the cycle is actual, and its complementary part
is replaced with an idealized part. The idealized parts do not depend
on the operators to be solved. They are numerical procedures acting

4

2

1

3

0

Fig. 1 Illustration of a node-centered median-dual control volume

(shaded). Dual faces connect edge midpoints with primal cell centroids.

Numbers 0–4 denote grid nodes.
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directly on the known algebraic error to efficiently fulfill the task
assigned to the corresponding part of the two-grid cycle. The results
of the analysis are not single-number estimates; they are rather
convergence patterns of the iterations that may either confirm or
refute our expectations as to what part of the actual cycle is not
efficient in carrying out the assigned task. These IR and ICG analysis
methods can be regarded as a numerical extension of the Fourier
analysis to problems in which the classical Fourier analysis is
inapplicable, in particular, to unstructured-grid solvers.

IR and ICG iterations are analysis methods that test computational
efficiency of a two-grid cycle. The two-grid cycle amplification
matrix, M, transforms the initial fine-grid algebraic error, eold, into
the after-cycle error, enew:

e new �Meold (8)

The amplification matrix can be defined as

M� S�2CS�1 (9)

Here, �1 and �2 are small nonnegative integers representing the
number of pre- and postrelaxation sweeps, S is the fine-grid
relaxation amplification matrix, and C is the amplification matrix of
the coarse-grid correction:

C� E � P0�Ac��1R0A
f (10)

where Ac and Af are the coarse and fine-grid operator matrices, P0

andR0 are the prolongation and agglomeration matrices, andE is the
fine-grid identity matrix.

For IR iterations, the coarse-grid correction part is actual and the
relaxation is idealized. The idealized relaxation may be defined as an
explicit error-averaging procedure. In this paper, we employ the IR
procedure that replaces the algebraic error at each dual cell with an
average of algebraic errors at edge-adjacent cells. At each relaxation
step, the known exact solution, if not zero, is subtracted from the
current approximation to obtain the algebraic error function. The
explicit averaging procedure is applied directly to the error function.
The number of sweeps throughout the grid is taken as �1 or �2, andwe
denote the corresponding cycles as IR��1; �2�. The exact solution is
then added back. Slow convergence of IR iterations indicates
insufficient coarse-grid correction.

In ICG iterations, the relaxation scheme is actual and the coarse-
grid correction is idealized. Assuming that the agglomeration and
prolongation operators are suitable for efficient multigrid solution,
the idealized coarse-grid correction involves idealized fine and

coarse operators, Afideal and Acideal, such that Dc
��Acideal��1 is an

accurate approximation to Df
��A

f
ideal��1 for smooth error com-

ponents. Here,Dc
� andDf

� are diagonal matrices with corresponding
coarse- and fine-grid volumes on the diagonals. The simplest
idealized operators are corresponding fine- and coarse-grid identity
matrices. With this choice, the idealized coarse-grid correction
becomes

Cideal � E � P0�Dc
���1R0D

f
� (11)

Note that the operator �Dc
���1R0D

f
� represents volume-weighted

averaging. In ICG analysis, the idealized Cideal is applied directly to
the known algebraic errors obtained after prerelaxation sweep(s) of
the actual relaxation. In implementation, the algebraic error is
averaged to the coarse grid, changed in sign, and then prolonged to
the fine grid. The slow convergence observed in the ICG iterations is
a sign of poor smoothing in relaxation. We denote the ICG cycle as
ICG��1; �2�.

V. Target Grids and Agglomerations

The grids considered are generated by splitting isotropic mapped
Cartesian grids into triangular (two-dimensional) or tetrahedral
(three-dimensional) elements and then randomly perturbing the grid
points by up to one-quarter in two dimensions and one-sixth in three
dimensions of the local mesh size. A typical target grid is shown in

Fig. 2 for two dimensions with 33 points in each direction. An
orthographic view of the boundary grids of a typical target 3-D grid is
shown in Fig. 3, again for 33 points in each direction.

The grids are agglomerated within a topology-preserving
framework, in which hierarchies are assigned based on connections
to the computational boundaries. Corners are identified as grid points
with three or more boundary-condition-type closures (or three or
more boundary slope discontinuities). Ridges are identified as grid
points with two boundary-condition-type closures (or two boundary
slope discontinuities). Valleys are identified as grid points with a
single boundary-condition-type closure, and interiors are identified
as grid pointswith no boundary closure. The agglomerations proceed
hierarchically from seeds within the topologies, first corners, then
ridges, then valleys, and finally interiors. Rules are enforced to
maintain the boundary condition types of the finer grid within the
agglomerated grid. Candidate volumes to be agglomerated are vetted
against the hierarchy of the currently agglomerated volumes using
the rules summarized in Table 1. The allowed entries denote that
interior volumes can be agglomerated to any existing agglomerate.
The single disallowed entry enforces that two corners cannot be
agglomerated. The conditional entries denote that further inspection
of the connectivity of the topology must be considered before
agglomeration is allowed. For example, a ridge can be agglomerated
into a corner if the ridge is part of the boundary condition

x

z

0 0.5 1
0
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0.4

0.6
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1

Fig. 2 Typical 2-D target grid.

Fig. 3 Orthographic view of a typical 3-D target grid.
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specification associated with the corner. As another example, a ridge
can be agglomerated into an existing ridge agglomeration if the two
boundary conditions associated with each ridge are the same. Also,
the prolongation operator P1 is modified to prolong only from
hierarchies equal to or above the hierarchy of the prolonged point.
Hierarchies on each agglomerated grid are inherited from the finer
grid.

There are two agglomeration schemes, referred to as schemes I and
II, that have evolved historically within this development. The
agglomeration scheme I orders the possible points within a hierarchy
using the distance from the corners of the grid and the closest points
are takenfirst. Given a seed, a triad is constructed using a surrounding
cloud of points, defined from the adjacency list. The first leg of the
triad is defined by the seed and the nearest point. The next leg of the

triad is defined by including another point from the entries in the
cloud such that the leg ismost orthogonal to the first leg. The third leg
is found as the one most parallel to the cross product of the first two
legs. Points within the volume defined by the triads (extended to
infinite length) are taken, first for the edge adjacencies in the cloud
and subsequently for the entire adjacency, to satisfy a global
coarsening goal (four volumes agglomerated for two dimensions and
eight for three dimensions). The agglomeration scheme II also starts
from the corners. After all corners have been agglomerated, a front
list is defined by collecting nodes adjacent to the agglomerated
corners. It then proceeds to agglomerate nodes in the list (while
updating the list as the agglomeration proceeds) in the following
order: ridges, valleys, interiors. A node is selected among those in the
same hierarchy that has the least number of nonagglomerated
neighbors to reduce the occurrences of agglomerations with small
numbers of volumes. For a given seed, it collects all neighbors and
agglomerates them up to a specifiedmaximum number, for example,
eight in three dimensions. The agglomeration continues until the
front list becomes empty. For either agglomeration scheme,
agglomerations containing only a few volumes are combined with
other agglomerations, as is typical of the methods used in the
literature.

Figure 4 shows three agglomerated grids generated from the
primal grid in Fig. 2 using agglomeration schemes I and II. Figure 5
shows three agglomerated grids generated from the primal grid in
Fig. 3 using agglomeration scheme II. The agglomerations are
representative of those in the literature.

For meshes stretched toward a surface, implicit lines are used.
They are defined in the direction normal to the surface by the shortest
distance between nodes, constructed on the primal grid, and
terminated in the isotopic region [1–3]. The agglomerations are first
constructed along the boundary of the grid (corners, ridges, and
valleys) and then the cells are agglomerated from the boundary
within the implicit lines associated with the stretched grid. The

Table 1 Admissible agglomerations

Hierarchy
of agglomeration

Hierarchy of added
volume

Agglomeration
decision

Corner Interior Allowed
(corner to interior)

Corner Valley Conditional
Corner Ridge Conditional
Corner Corner Disallowed

(two corners)
Ridge Interior Allowed

(ridge to interior)
Ridge Valley Conditional
Ridge Ridge Conditional
Valley Interior Allowed

(valley to interior)
Valley Valley Conditional
Interior Interior Allowed

(interior to interior)

Fig. 4 Control-volume boundaries (nonlumped) for 2-D agglomerations using scheme I (top row) and scheme II (bottom row).

Fig. 5 Control-volume boundaries (nonlumped) for 3-D agglomerations using scheme II.
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boundary agglomerate is merged with the volumes corresponding to
the next node in the line. The agglomeration continues to the end of
the shortest line in the boundary agglomerate, merging two cells in
the normal direction at a time. After agglomeration of lines, the
algorithm uses the point agglomeration method for the rest of the
domain. Illustrations of stretched grids and corresponding agglom-
erations are shown in Section VI.

VI. Two-Dimensional Results

A summary of V�2; 1� multigrid cycle convergence rates is
compiled in Tables 2 and 3 for the two agglomeration schemes,
respectively. The computations are performed for the Green–Gauss
scheme on the fine grid with various coarse-grid operators. The
asymptotic convergence per cycle and the number of cycles to reach
machine-precision residuals from a random initial perturbation are
tabulated. Multigrid cycles employ as many levels as possible; for
example, there are six levels used for the 129 � 129 target grid and

four levels for the 33 � 33 target grid. Table 4 shows convergence
rates per relaxation and the number of relaxations to converge for
single-grid calculations. Somewhat surprisingly, with the Galerkin
coarse-grid operator constructed via R0A

fP1, the multigrid
algorithm is divergent. The reason, confirmed by analysis, is that
the coarse-grid operator, although accurate, loses h ellipticity [1].
This loss of h ellipticity for theGalerkin operator with simplex-based
P1 prolongation has been observed even with quadrilateral grids, for
which bilinear prolongation is known to result in h elliptic coarse-
grid operators.

With the Galerkin coarse-grid operator R0A
fP�0, the multigrid

algorithm is stable. However, the convergence rates degrade on finer
grids with either agglomeration scheme. With the coarse-grid
operator using only the edge terms, the convergence per cycle is
generally better, but again shows a deterioration on finer grids. The
deterioration is noticeably worse with the agglomeration scheme II,
although it is hard to judge the reason from visual inspection of the
agglomerated grids.With the Avg-LSQ scheme, the convergence per
cycle is 0.21 or better and grid independent. In any case, themultigrid
algorithm, whether grid dependent or grid independent, gives
considerable speedup over a single-grid method; compare Tables 2
and 3 with Table 4.

The dependence on the number of levels in the multigrid cycle is
shown in Table 5 using the two agglomeration schemes. In all cases,
the coarsest-grid residual was reduced 2 orders of magnitude from
the initial coarsest-grid residual; the results were insensitive to
reducing the coarsest-level residual further. Typically, convergence
in a two-level cycle is a lower bound of the convergence in a
multilevel cycle; such behavior is observed with the coarse grids
discretized using the Avg-LSQ scheme. The observed multilevel
cycle convergence is very similar to the two-level cycle convergence.
With the coarse grids discretized using the edge-terms-only scheme,
the results are unexpected; the six-level cycle convergence is
significantly better than the two-level cycle convergence. This is true
for both agglomeration schemes, although the effect is considerably
more pronounced with agglomeration scheme II. A possible
explanation is that the coarser agglomeration grids have a less
consistently high skewing, thusmitigating inconsistency of the edge-
terms-only discretization. Although we did not tabulate the results,
the dependence on the number of levels in the multigrid cycle for the
heuristic Galerkin construction is more or less as would be expected;
the two-level cycle converges best, and performance falls off with
increasing number of levels.

The grid-dependent convergence of multigrid cycles with the
edge-terms-only scheme (Tables 2 and 3) is attributed to the poor
coarse-grid correction, which is confirmed by quantitative analysis.
Both ICG and IR were applied to a family of element-based grids
(33 � 33, 65 � 65, 129 � 129, and 257 � 257) with coarser grids
constructed in turn using each of the two agglomeration schemes.
Convergence of the ICG(3,3) schemewas less than 0.1 per cycle in all
cases, indicating that the multicolor relaxation is not a source of the
grid-dependent convergence. The results of applying IR(3,3) are
shown in Table 6 with the coarse-grid correction using the Avg-LSQ
and the edge-terms-only schemes for each of the two agglomeration
schemes. With the coarse-grid correction using the Avg-LSQ
scheme, the convergence rates per cycle are grid independent and

Table 2 Summary of multilevel asymptotic convergence rates

per V�2; 1� multigrid cycle with agglomeration scheme I for the

Green–Gauss scheme on the fine grid with various coarse-grid
operators; cycles to convergence are in parentheses

Fine grid Direct discretization Galerkin discretization

Avg-LSQ Edge terms only R0A
fP�0 R0A

fP1

33 � 33 0.15(12) 0.20(13) 0.51(23) Divergent
65 � 65 0.18(12) 0.29(15) 0.58(25) Divergent
129 � 129 0.21(12) 0.33(16) 0.60(24) Divergent
257 � 257 0.19(12) 0.44(18) 0.62(24) Divergent

Table 3 Summary of multilevel asymptotic convergence rates

per V�2; 1�multigrid cycle with agglomeration scheme II for the

Green–Gauss scheme on the fine grid with various coarse-grid

operators; cycles to convergence are in parentheses

Fine grid Direct discretization Galerkin discretization

Avg-LSQ Edge terms only R0A
fP�0 R0A

fP1

33 � 33 0.16(11) 0.29(15) 0.47(23) Divergent
65 � 65 0.16(11) 0.42(19) 0.58(27) Divergent
129 � 129 0.18(12) 0.54(26) 0.68(31) Divergent
257 � 257 0.18(12) 0.82(60) 0.71(34) Divergent

Table 4 Summary of asymptotic convergence rates

per relaxation and the number of relaxations to converge

in single-grid calculations (the Green–Gauss scheme is used)

Convergence per relaxation Number of relaxations

33 � 33 0.99710 1278
65 � 65 0.99926 5440
129 � 129 0.99945 16320

Table 5 Asymptotic convergence per V�2; 1� cycle for the Green–Gauss scheme on the target

129 � 129 grid with various coarse-grid operators; cycles to convergence are in parentheses

Agglomeration scheme I Agglomeration scheme ii

Coarse-grid discretization Coarse-grid discretization

Multigrid levels Avg-LSQ Edge terms only Avg-LSQ Edge terms only

6 0.21(12) 0.33(16) 0.18(12) 0.54(26)
5 0.21(12) 0.33(16) 0.18(12) 0.54(26)
4 0.20(12) 0.35(16) 0.18(12) 0.60(30)
3 0.19(12) 0.43(19) 0.18(12) 0.69(39)
2 0.18(12) 0.41(18) 0.17(12) 0.81(55)
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better than 0.21; the number of cycles to convergence is 12 at most.
With the coarse-grid correction using the edge-terms-only scheme,
the convergence rates and number of cycles to converge are grid
dependent.

With a consistent coarse-grid discretization, such as the Avg-LSQ
scheme, we expect good two-level convergence rates. With the Avg-
LSQ scheme, relaxation is implemented within a defect-correction
setting in which the approximate linearization based on the edge-
terms-only scheme is used as a driver. Theviability of this approach is
checked using ICG(3,3) for the family of grids agglomerated from
the parent 257 � 257 grid. The convergence per cycle is shown in
Table 7 for different agglomeration levels, where the target element-
based grid is denoted as level 0. In all cases, the edge-terms-only
scheme provides adequate relaxation, yielding an order ofmagnitude
convergence per ICG(3,3) cycle.

The spatial convergence of discretization error for agglomerate
families with the Avg-LSQ target-grid discretization is shown in
Fig. 6. Results with the edge-terms-only discretization are also
shown for reference. The manufactured solution is U� sin��x�
0:8�y� � 0:1x� 0:2y and the coarser grids were generated using
agglomeration scheme II. Each agglomerate family is composed of a
target element-based grid and agglomerated grids generated
recursively; a particular agglomerate family is denoted by the density
of the primal mesh in parentheses. The L1 norm of the discretization
error is shownversus an equivalentmesh size, taken as theL1 normof
a local characteristic distance, that is, hV � k�1=dk, where d is the
number of spatial dimensions. The edge-terms-only discretization
shows no order property, as expected, but the Avg-LSQ scheme
shows a second-order convergence of discretization errors. Thus, the
Avg-LSQ scheme is second-order accurate and provides a viableway
of discretizing diffusion terms on agglomerated coarse grids.

For the finer agglomerate family, multigrid convergence is shown
in Fig. 7 using the Avg-LSQ discretization on all grids. Multilevel
V�2; 2� cycles are used with two levels on the coarsest agglomerate
and six levels on the primal mesh. The initial conditions are taken as
the exact solutionwith a randomly perturbed error on each grid.Grid-
independent convergence is shown with approximately an order of
magnitude reduction in residual per cycle.

Table 7 Asymptotic convergence per cycle using ICG

(3,3) analysis for family of agglomerated grids;
cycles to convergence are in parentheses

(the Avg-LSQ scheme is used on all grids)

Agglomeration scheme

Agglomeration level I II

4 0.06 (8) 0.06 (8)
3 0.06 (8) 0.05 (7)
2 0.07 (8) 0.07 (8)
1 0.06 (8) 0.08 (8)
0 0.07 (8) 0.08 (8)

Table 8 Asymptotic convergence for two-level cycle for sheared

primal grids; cycles to convergence are in parentheses (the Green–

Gauss scheme is used on the primal grids)

Agglomeration scheme I Agglomeration scheme II

Coarse-grid discretization Coarse-grid discretization

Primal grid Avg-LSQ Edge terms only Avg-LSQ Edge terms only

17 � 17 0.17(12) 0.48(27) 0.15(12) 0.63(39)
33 � 33 0.18(12) 0.67(40) 0.20(12) unstable
65 � 65 0.21(12) 0.88(102) 0.22(13) unstable

Table 6 Asymptotic convergence per cycle using IR(3,3) analysis; cycles to convergence are in parentheses

Agglomeration scheme I Agglomeration scheme ii

Coarse-grid discretization Coarse-grid discretization

Element-based grid Avg-LSQ Edge terms only Avg-LSQ Edge terms only

33 � 33 0.11 (9) 0.32 (15) 0.14 (10) 0.55 (26)
65 � 65 0.13 (10) 0.49 (21) 0.15 (10) 0.72 (44)
129 � 129 0.20 (11) 0.54 (26) 0.21 (12) >0:99 (>200)
257 � 257 0.17(10) 0.61 (28) 0.20 (11) >0:99 (>500)
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Finally, to demonstrate that multigrid convergence with the
coarse-grid edge-terms-only discretization is grid dependent, a series
of sheared primal grids is considered with skew angles consistently
greater than 45 deg. A typical primal grid and the agglomerated grids
using the two agglomeration schemes are shown in Fig. 8. The
convergence of two-level multigrid cycles is shown in Table 8 using
the two agglomeration schemes with different coarse-grid
discretizations. Convergence with the coarse-grid Avg-LSQ
discretization is very similar using either agglomeration scheme
and nominally grid independent. With the coarse-grid discretized
using the edge-terms-only scheme, the convergence is grid-
dependent for agglomeration scheme I; the multigrid cycle is
unstable beyond the coarsest grid with agglomeration scheme II.
Note the variability in convergencewith the edge-terms-only coarse-
grid discretization between agglomeration schemes I and II even
though the agglomerations from the two schemes are quite regular
and similar (Fig. 8).

VII. Three-Dimensional Results

Multigrid asymptotic convergence rates are shown in Table 9 with
various coarse-grid operators for a range of isotropic 3-D grids

(9 � 9 � 9 to 129 � 129 � 129). Results are obtained with multiple-
levelV�3; 3�multigrid cycles. Two-grid results are not shown but are
very similar to the multiple-level results. Agglomerated grids are
generated with scheme II.

The 3-D results are consistent with the 2-D results. With the
Galerkin coarse-grid operator constructed viaR0A

fP�0 , the multigrid
algorithm is stable, but the convergence degrades on finer grids. The
Galerkin coarse-grid operator constructed via R0A

fP1 was again
found to be divergent. With agglomerated grids using the edge-
terms-only scheme, the convergence per cycle is better but again
shows a deterioration on finer grids. Note that the deterioration
observed in three dimensions is weaker than that in two dimensions.
With agglomerated grids using the Avg-LSQ scheme, the
convergence per cycle is practically grid-independent; the
asymptotic convergence per cycle is similar to that in two
dimensions. In any case, the multigrid method gives considerable
speedup over a single-grid method, as clearly seen in Fig. 9, which
shows the residual convergence versus work units for the 65 � 65 �
65 grid case. Here, the work unit is defined as the work required for
one residual evaluation and relaxation on the target grid; a multigrid
V�3; 3� cycle requires about 7 work units; restriction and
prolongation work is small and has been neglected. The multigrid
method converged in 108 work units using the Avg-LSQ scheme,
144 using the edge-terms-only scheme, and 425 with the Galerkin
coarse-grid operator constructed via R0A

fP�0 , whereas the single-
grid method converged in 10,335 work units. Some dependence on
the number of levels in the multigrid cycle similar to that for 2-D
cases as shown in Table 5 was observed also in three dimensions, but
the variation was smaller.

The multigrid V�3; 3� cycle is tested with a line agglomeration/
relaxation for stretched grids typical in high-Reynolds-number flow
simulations. The grids are regular tetrahedral 9 � 9 � 17,
13 � 13 � 25, 17 � 17 � 33, 24 � 24 � 47, 33 � 33 � 65, 49 �
49 � 97 grids with exponential stretching applied in the z direction.
The stretching is applied only in the lower half region; the upper half
remains isotropic. A representative grid is shown in Fig. 10. A line
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Fig. 8 Primal (33 � 33) grid and agglomerated grids.

Table 9 Summary of multilevel asymptotic convergence rates

per V�3; 3�multigrid cycle with agglomeration scheme II for the
Green–Gauss scheme on the fine grid with various coarse-grid operators

Fine grid Direct discretization Galerkin discretization

Avg-LSQ Edge terms only R0A
fP�0 R0A

fP1

9 � 9 � 9 0.05 0.05 0.15 divergent
17 � 17 � 17 0.11 0.16 0.35 divergent
33 � 33 � 33 0.14 0.26 0.54 divergent
65 � 65 � 65 0.16 0.30 0.67 divergent
97 � 97 � 97 0.24 0.33 0.73 divergent
129 � 129 � 129 0.22 0.34 0.76 divergent
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agglomeration and a line relaxation are applied in the stretched
region. A representative coarse grid is shown in Fig. 11. The results
are shown in Fig. 12. The mesh size h corresponds to 1=�N1=3 � 1�,
whereN is the total number of nodes.Again,multigridwith either the
edge-terms-only or the Galerkin coarse-grid operator shows a
deterioration on finer grids, whereas a multigrid with the Avg-LSQ
scheme gives nearly grid-independent results. One would have to
consider even higher mesh densities to clearly indicate the behavior
of the convergence rate with mesh refinement.

The IR and ICG analysis methods have been applied within a two-
grid multigrid cycle on perturbed isotropic tetrahedral grids to
evaluate relaxation smoothing and efficiency of coarse-grid
correction. The point relaxation scheme has been tested on a 33 �
33 � 33 grid for three formulations: Green–Gauss, Avg-LSQ, and
edge terms only. Convergence rates observed in ICG iterations
and collected in Table 10 show that the tested relaxation is an effi-

cient error smoother for all three schemes; the high-frequency
error reduction is better than 0.55, which is an excellent smoothing
factor.

IR iterations have been performed to analyze the quality of coarse-
grid correction with two different coarse-grid schemes: Avg-LSQ
and edge-terms-only approximation. The results are shown in
Table 11. To provide robust grid-independent convergence rates in a

Fig. 10 33 � 33 � 65 stretched grid with the maximum aspect ratio of
6.25.

Fig. 11 Coarse grid for the 33 � 33 � 65 stretched grid with the

maximum aspect ratio of 6.25.
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Table 10 Summary of smoothing rates of three
relaxation schemes obtained from ICG(1,0)

on a 33 � 33 � 33 perturbed isotropic tetrahedral grid

(the Green–Gauss scheme is used on the fine grid)

Green–Gauss Avg-LSQ Edge-terms-only

0.545 0.470 0.358
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multigrid cycle, the coarse-grid correction is expected to reduce
smooth errors by an order of magnitude. Convergence rates observed
in IR iterations with six explicit error-averaging sweeps show that
the coarse-grid correction is adequate for the Avg-LSQ scheme.
The rates observed for the edge-terms-only scheme are slow and
further deteriorate on grids with consistent high skewing. Both
schemes appear insensitive to the prolongation order, demonstrating
almost identical convergence rates for either P0 or P1 prolongation
operator.

VIII. Conclusions

Agglomerated multigrid techniques used in unstructured-grid
methods have been critically studied for a model problem
representative of laminar diffusion in the incompressible limit. The
studied target-grid discretizations and discretizations used on
agglomerated grids are typical node-centered formulations.
Agglomerated multigrid convergence rates are compiled using a
range of two- and three-dimensional randomly perturbed
unstructured grids for simple geometries, including isotropic and
stretched grids. Two agglomeration techniques are used within an
overall topology-preserving agglomeration framework. The results
show that a multigrid with an inconsistent coarse-grid scheme using
only the edge terms (also referred to in the literature as a thin-layer
formulation) provides considerable speedup over single-grid
methods, but its convergence can deteriorate on consistently skewed
grids. A multigrid with a formally inconsistent Galerkin coarse-grid
discretization using piecewise-constant prolongation and a heuristic
correction is slower and also can be grid dependent. A consistent
Galerkin coarse-grid construction using simplex prolongation was
found to be unstable because the discretization lacked h ellipticity.
Nearly grid-independent convergence rates are demonstrated for a
multigrid with consistent coarse-grid discretizations. Additional
study with higher mesh densities is required to determine grid-
independence for 3-D high-aspect-ratio grids. The results from the
actual cycle are verified using discrete analysis methods in which
parts of the cycle are replaced by their idealized counterparts.
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P1 prolongation 0.125 0.303
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